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Abstract 

 

This study presents a stochastic mortality model, which is an extension of the 

Cairns-Blake-Dowd model (CBD) (Cairns and David et.al, 2009), to include an age 

component to account for distinct age effects among various age groups. The proposed 

extension is evaluated against well-known mortality models, including the Lee-Carter 

model (Lee and Carter, 1992), the Renshaw and Haberman model (Renshaw and 

Haberman, 2006) and the CBD model (Cairns and Blake, 2006b) and its variants (Cairns 

and David et.al, 2009). To model longevity risk, this study used data from Japan, the Asian 

nation with the highest life expectancy and UK, the highest life expectancy rate in Europe. 

A variety of measures were used to compare the models; the Bayesian information criterion 

was used to measure the parsimony of the models, and parameter estimation was used to 

evaluate the robustness of the models between different fitting periods. The results show 

that our proposed model is a promising approach in mortality modeling, producing 

empirical results that can greatly inform the insurance industry and governmental policies. 
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1.  Introduction 
In recent decades, emerging longevity risk issues have received increasing attention from academic 

scholars, the insurance industry and governments. Longevity risk results from the underestimation of 

human life expectancy in the preliminary plans of insurance companies and governments. Financial 

products such as life insurance, pension plans and governmental policies can experience serious losses 
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as a result of longevity risk. More accurate mortality models with improved mortality rate projections 

can provide a solution to this problem and can allow insurance companies and governments to redesign 

their financial products, strategies and policies. Although alternative approaches may also address 

longevity bonds (Chen and Cummins, 2010) or securitization (Cox and Lin et. al.,2010; Wills and 

Sherris, 2010) this study focused on the development of alternative mortality models. 

Cairns and Blake (Cairns and Blake, 2006b) classified mortality models into two categories: the 

continuous-time framework (e.g., Milevsky David Promislow, 2001; Dahl, 2004; Biffis, 2005; 

Schrager, 2006; Dahl and Moller, 2006) and the discrete-time framework (e.g., Lee and Cater, 1992; 

Cairns and Blake, 2006b; Renshaw and Haberman, 2006; Cairns and David et. al., 2009). The well-

known Lee-Carter (LC) model (Lee and Cater, 1992) is a discrete-time mortality model with a 

parsimonious structure and generally good performance. However, the LC model has several 

disadvantages, and many modifications have been proposed to address these issues. Renshaw and 

Haberman (Rensahaw amd Haberman, 2006) proposed a modification (called RH in this article) that 

added a cohort effect to the LC model, which improved performance when a cohort effect exists in the 

mortality data. However, Cairns and Blake (Cairns and Blake et. al., 2008) argued that the RH model 

suffers from a lack of robustness. Along with Dowd, they proposed a two-factor model (Cairns and 

Blake, 2006b) (called CBD) to model longevity risk. This model focuses on older populations and 

produces excellent results. Subsequently, Cairns et al. (Cairns and David et. al., 2009) proposed several 

modifications of CBD and used rigorous model selection criteria to evaluate the models with data from 

England, Wales and the United States. Their results showed that the CBD modification (called CBD2 

in this article) exhibited a good balance of goodness of fit and robustness. Furthermore, they argued 

that no single best model exists, suggesting that users choose a model according to the circumstances 

and consider the problems of data-dominated models. 

In this paper, we propose a modification to the CBD model called CBDE. This modification 

adds an age-specific vector to capture variance among different age groups. Mortality data from two 

developed countries were used: Japan, a developed country in Asia with a large elderly population, and 

the UK, a developed country in Europe. Cairns et al. (Cairns and David et. al., 2009) used an explicit 

model comparison, and we used the model evaluation process from their study to measure the 

goodness of fit and the robustness of the LC, RH, CBD, modified CBD and CBDE models with 

mortality data from Japan and the UK. According to BIC and parameter robustness, the CBDE model 

is a robust model for mortality data of Japan and the UK. 

The remainder of this article is organized as follows: section 2 reviews the existing mortality 

models, section 3 describes our experimental design, section 4 illustrates the expected experimental 

results, and the final section summarizes the study’s contributions. 

 

 

2.  Mortality Models 
In this section, we briefly review seven popular mortality models and discuss their advantages and 

limitations. These models include the Lee-Carter model (Lee and Carter, 1992) and its extension, 

Renshaw and Haberman model (Renshaw and Haberman, 2006) and the CBD model and its extensions 

(Cairns and David et. al., 2009). 

 

2.1. Lee-Carter Model (LC; LC Model) and Its Extension 

Lee and Carter (Lee and Carter, 1992) proposed a mortality model for the central death rate series 

tx ,µ
that reduces the dimensionality of the problem by identifying a single time index and summarizing 

historical trends. The structure of the LC mortality model is as follows: 

, ,ln x t x x t x tm α β κ ε= + +  (2.1) 
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where the parameter xα describes the average age-specific empirical mortality rates, tκ  represents the 

general mortality level, and the decline in mortality at age x is expressed by xβ . The term ,x tε  indicates 

the deviation of the model from the observed log-central death rates and is assumed to be white noise 

with a mean of zero and relatively small variance (Lee, 2000). Specifically, ,x tε  denotes an 

independent and identically distributed ( )20,N σ  random variable, depicting an age- and time-specific 

effect not captured by the model. In a unique solution, Lee and Carter (Lee and Carter, 1992) employed 

two constraints: the sum of xβ  coefficients equal to 1 and the sum of tκ  coefficients equal to 0, 

namely, 1x xβ =∑  and 0t tκ =∑ . 

A variety of disadvantages arise in connection with the Lee-Carter model. An improvement is 

to incorporate a cohort effect to the Lee-Carter mode. Consequently, Renshaw and Haberman 

(Renshaw and Haberman, 2006) proposed an age-period-cohort mortality models (RH; RH model): 
(1) (2)

,ln x t x x t x t xm α β κ β γ −= + +  (2.2) 

where t xγ −  is a random cohort effect that is a function of the year of birth (t − x). The LC model is a 

special case of the RH model when (2)

x t xβ γ −  equals zero. The RH model offers a significantly better fit 

to historical data if a cohort effect was found in the past. 

 

2.2. CBD Model and Its Extension 

Cairns, Blake, and Dowd (Cairns and Blake et. al., 2006b) proposed a two-factor model that models 

initial mortality rates rather than a central mortality rate; this approach attempts to capture the 

dynamics of older age groups. Cairns and David et al. (Cairns and David et. al., 2009) then proposed 

several modifications of CBD. One generalization of the CBD model is of the form (CBD2; CBD2 

model): 

( ) ( )(1) (2) (3) 2 2ˆ( , ) ( ) ( )
t t t x t x

Logit q t x x x x xκ κ κ σ γ −= + − + − − +  (2.3) 

where q(t,x) is the mortality rate for an individual of age x in year t; x  is the mean age in the sample 

age range; (1)

tκ  and (2)

tκ  are summed to be a two-dimensional random walk with drift; (3)

tκ  is a 

sensitivity to quadratic term to the age effect inspired by the possible curvature identified in the 

( )( , )Logit q t x  plots in the U.S. data; the constant 
2 1 2ˆ ( )x a in x xσ −= −∑ is the mean of 2( )x x− ; and 

t xγ −  

is the cohort effect and satisfies the constraint 0c C cγ∈ =∑  and 0c C ccγ∈ =∑ , where c is the set of 

cohort years of birth that have been included in the analysis. Note that we obtain the CBD0 model of 

Cairns, Blake, and Dowd (Cairns and Blake et. al., 2006b) when (3) 0t t xκ γ −= =  and the CBD1 model 

when (3) 0tκ = . The CBD model has been widely adopted to investigate hedging and the securitization 

of longevity risk (Cairns and Blake et. al., 2006a). Data from England, Wales, and the United States 

have been used to demonstrate that the inclusion of a cohort effect can lead to a better fit (Cairns, 

2007). 

The second generalization of the CBD model, CBD3 model, builds on experience with fit in the 

RH model and satisfies 

( ) (1) (2)
( , ) ( ) ( )t t t x cLogit q t x x x x xκ κ γ −= + − + − , (2.4) 

where cx  is constant parameter to be estimated. This model suggests that the impact of the cohort 

effect, 
cγ , for any specific cohort, diminishes over time (i.e., 

cγ  decreases with age) instead of 

remaining constant. Models CBD1 to CBD3 are each an extension of the original CBD0 model and 

include some allowance for the cohort effect. Consequently, models CBD1 to CBD3 can be described 

as members of the family of generalized CBD models. 
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3.  The Extension of the CBD Model (CBDE; CBDE Model) 

In the CBD model, the mortality index (2)

tκ  is only related to ( )x x−  which affects mortality-rate 

dynamics at higher ages much more than at lower age. In the LC and RH models, however, the 

mortality index (2)

tκ  is also related to the age-specific coefficient 
xβ . We therefore extended the LC 

and CBD2 models to create the following model: 

( ) (1) (2) (3) 2
( , ) ( ) ( )t t x t t xLogit q t x x x x xκ κ β κ γ −= + − + − + . (2.5) 

This model contains five sets of parameters： (1)

tκ , (2)

tκ , (3)

tκ , 
xβ  and t xγ − . Similar to the 

CBD2 model, ( , )q t x  is also determined by the state variables (1) (2) (3), ,
t t t

κ κ κ ′    which follow a three-

dimensional random walk with drift. First factor, (1)

tκ , interprets changes in mortality for all ages. 

Factor (2)

tκ  explains how the variation between ages, which reflects the observed mortality rate, may 

differ among age groups over time. To identify curvature in the older age group, factor (3)

tκ  and term 

2( )x x−  provide variations that differ from (1)

tκ . The last factor, t xγ − , is the cohort component in this 

model. In contrast to CBD2, this model removed the term 2ˆ
xσ . 

To better understand the age-specific mortality rates with historical observations, we used a 

new component, 
x

β . This factor is similar to the Lee-Carter model and denotes the general shape of 

the logarithmic transformation of the age-specific mortality rates with historical observations. 

Furthermore, we adopted the same constants from CBD2 to obtain a unique solution that involves 

0c C cγ∈ =∑  and 
2

0c C cc γ∈ =∑ . All of the parameters were estimated by the maximum likelihood 

method. 

 

 

4.  Experiments and Results 
4.1. Data Set Description 

To focus on longevity risk and analyze the model’s performance, we examined data from the countries 

with the highest life expectancy in Asia and Europe. Japan and the UK were selected for our data set. 

According to statistics from the United Nations
1
, Japan has the highest life expectancy in Asia. 

Empirical data from the UK were chosen because the UK has the highest life expectancy rate in 

Europe. All of the available data sets were obtained from the public Human Mortality Database 

(HMD)
2
. As shown in Table 1, data were available from a number of time periods. However, to ensure 

consistency with the time periods used by Cairns et al. (Cairns and David et. al., 2009), we used data 

from 1968 to 2008. All of the experiments were conducted using the statistics computing language R 

(R Development Core Team, 2010) and its packages (the LifeMetrics Toolkit released by J.P. Morgan 

(Coughlan and Epstein et. al., 2007) ). 

The mortality improvement trends for each country are shown in Figure and Figure 2; these 

figures cover the years 1950 to 2008, and the data are separated into ten-year periods (i.e., 1959, 1969, 

1979, 1989, 1999 and 2008). The trends from the UK show fairly stable and linear improvement before 

the age of 80-85 years; after age 82.5, the trends show slight variability. In contrast, the trends from the 

Japan show the greatest volatility between the ages of 79-95 years. These results show that mortality 

trends are fairly flat and stable over time in UK. 

                                                 
1
 United Nations World Population Prospects: 2008 revision – http://esa.un.org/unpp/ 

2
 http://www.mortality.org/ 
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Table 1: Available periods of Japanese and UK mortality data from the HMD 

 
Region Country Available periods Fitting Periods 

Asia Japan 1947-2008 1968-2008 

Europe UK 1922-2009 1968-2008 

 

4.1. Model Selection Criteria 

In this paper, we compare the seven models, LC, RH, CBD0, CBD1, CBD2, CBD3 and CBDE models 

according to the Bayesian information criterion (BIC), a general criterion for model selection among a 

class of parametric models with different numbers of parameters. When estimating model parameters 

using the maximum likelihood estimation, it is possible to increase the likelihood by adding 

parameters, which may result in over-fitting. The BIC resolves this problem by introducing a penalty 

term for the number of parameters in the model. The BIC for model r is defined as 

1ˆ( ) log
2

BIC l Nγ γ γφ ν= −  (2.6) 

We conducted formal model comparisons based on these countries. For each model, we 

estimated the ( )i

xβ , ( )i

tκ , and 
t xγ −  for each factor i, age x, year t and cohort c t x= −  by maximizing the 

log-likelihood function. 

 

4.2. Model Fitness 

The experiments used the BIC to measure the performance of the seven stochastic models discussed in 

section 2. Different results were obtained from each country’s data. 

Table 2 shows the ranking of the models using the data from Japan. The top three models are 

the CBD extension model (CBDE), CBD2 and CBD3 according to BIC. As shown in the top three 

models for the UK are RH, CBDE and CBD2 according to BIC. All of the cohort extensions of CBD, 

but not the original CBD model, showed the advantages of a longevity risk model. The CBD variants 

CBD2 and CBD3 (Cairns and David et. al., 2009) contained the cohort component and produced 

excellent results in all countries. However, the original two-factor model CBD0 [5] produced poor 

goodness-of-fit in all countries. These results imply that models that adjust for the cohort effect can 

model realistic mortality better than can the original CBD model. However, the CBDE model was 

modified from CBD2, which added age-specific coefficients to capture different age effects. The 

results show that the proposed extension of the CBD model (CBDE) is promising and that it obtained 

the best BIC using the data from Japan and ranked second using the data from the UK. 
 

Table 2: The LLF and BIC of Mortality Data of Japan 
 

Model Effective number of parameters Maximum log-Likelihood BIC Rank 

LC 94 -22815 -23143 6 

RH 187 -7124 -7776 4 

CBD0 72 -27207 -27457 7 

CBD1 135 -8056 -8527 5 

CBD2 170 -6881 -7473 2 

CBD3 137 -7042 -7519 3 

CBDE 200 -6712 -7314 1 

 

Table 3: The LLF and BIC of Mortality Data of the UK 
 

Model Effective number of parameters Maximum log-Likelihood BIC Rank 

LC 94 -11571 -11898 7 

RH 187 -7285 -7536 5 

CBD0 72 -10207 -10458 6 

CBD1 135 -7143 -7622 3 
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Table 3: The LLF and BIC of Mortality Data of the UK - continued 

 
CBD2 170 -6768 -7464 1 

CBD3 137 -7153 -7630 4 

CBDE 200 -6872 -7525 2 

 
Figure 1: Japan 

 

 
 

Figure 2: UK 

 

 
 

4.3. Robustness of the Stochastic Models 

To evaluate the robustness of the models, their parameters were re-estimated with the maximum 

likelihood method using the time period 1980-2008. The parameter trends of the seven mortality 

models for UK and Japan were plotted. The robustness analysis of the models is presented in the 

appendix (from Figure 3 to Figure 16). 
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Cairns, David et al. (Cairns and David et. al., 2009) provided an excellent approach to the 

evaluation of the robustness of mortality models, suggesting that a robust model should have 

parameters that are consistent with different fitting periods. The figures in the appendix show the 

parameter trends of the evaluated models with distinct fitting periods from Japan. For example, Figure 

4 shows that the RH model has four estimated parameters, but the model cannot exhibit consistent 

parameter trends for the two fitting periods. Of the seven models, only CBD0, CBD1 and CBDE model 

show stable trends between the two periods (Figure 5, Figure 6 and Figure 9). The other models either 

overestimate or underestimate behavior in 1968-2008 compared with 1980-2008. Although CBD0 

shows fairly stable trends in Japan, the CBD2, CBD3 and CBDE models include a cohort component 

that could reflect more realistic mortality improvement than CBD0. However, CBDE has more stable 

trends than CBD2 and CBD3. Consequently, the CBDE model is a robust model for Japanese mortality 

data. 

Similarly, for the mortality data of UK, the CBD0, CBD1 and CBDE models also show stable 

trends between the two periods (Figure 12, Figure 13 and Figure 16). In addition, LC and CBD2 

models also provide steady trends. Consequently, according to BIC and parameter robustness, both 

CBD2 and CBDE models are robust model for mortality data of the UK. 

 

4.4. Future Mortality Rate Projections 

Using the results of the mortality models from the previous section to project future mortality rates is 

interesting and informative. We used the top three models identified in the BIC analysis to project the 

mortality rate at age 75 in 2009-2057
3
. Figure 17 shows the projection results from Japan with the 

CBD2, CBD3 and CBDE models. These models are illustrated by different colors with 95% 

confidence intervals (the median line is the best estimate). The projection from CBD3 almost overlays 

that from CBD2 but exhibits a slightly declining trend when compared with CBD2. The projection 

from CBDE (magenta lines) shows a greater decline in the mortality rate than CBD2 (red line) and 

CBD3 (blue line). Figure 18 plots the mortality rate projections from the UK. The results from the UK 

are similar to those from Japan but include a wider confidence interval; CBDE again shows a greater 

decline than CBD2 and CBD3. 

 
Figure 17: Projected mortality rates at age 75 in future periods (2009 to 2057) in Japan via CBD2, CBD3 and 

CBD-E 

 

 

                                                 
3
 The projections for other ages are available from the author. 



International Research Journal of Finance and Economics - Issue 82 (2012) 56 

Figure 18: Projected mortality rates at age 75 in future periods (2009 to 2057) in the UK via CBD2, CBD3 and 

CBD-E 

 

 
5.  Conclusion 
Longevity risk, or a lower than expected human mortality rate, is a crucial issue affecting governmental 

policies and the insurance industry. The Lee-Carter (LC) model (Lee and Carter, 1992) is perhaps the 

most popular approach to mortality modeling; however, various disadvantages arise in connection with 

the Lee-Carter model. One improvement is to consider the cohort effect in the classical LC model. 

These include Age-Period-Cohort (APC) models such as the Renshaw and Haberman (RH) 

model(Renshaw and Haberman, 2006) and CBD models (Cairns and Blake et. al., 2006b; Cairns and 

David et. al., 2009). APC models attempt to add a cohort effect, and CBD models aim to model risk 

among older age groups. 

To create a more suitable model and address longevity risk, this study proposes an extension of 

the CBD model (CBDE). The CBDE model is inspired by the CBD2 model, which integrated cohort 

effects and added age-specific coefficients to account for different age effects among various age 

groups. This study evaluated the models for goodness-of-fit and robustness. Section 4 showed that 

CBDE resulted in the best goodness-of-fit and exhibited better robustness than the other models. In 

particular, CBDE showed stable parameter trends between short-term and long-term periods. Although 

CBD-E did not produce the best BIC values with data from all countries, this model showed the 

greatest robustness. These results suggest that CBDE may allow for more stable mortality rate 

projections. 
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Appendix 
 

Figure 3: Japan data: Parameter estimates for the LC model 

 

 
 

Figure 4: Japan data: Parameter estimates for the RH model 
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Figure 4: Japan data: Parameter estimates for the RH model - continued 

 

 
 

Figure 5: Japan data: Parameter estimates for the CBD0 model 

 

 
 

Figure 6: Japan data: Parameter estimates for the CBD1 model 
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Figure 6: Japan data: Parameter estimates for the CBD1 model - continued 

 

 
 

Figure 7: Japan data: Parameter estimates for the CBD2 model 

 

1950 1970 1990 2010

-5
.8

-5
.6

-5
.4

-5
.2

-5
.0

CBD2 ,  kappa1

Year(t)

E
s
ti
m

a
te

d
 P

a
ra

m
e
te

rs

1968-2008

1980-2008

1950 1970 1990 2010

0
.0

6
5

0
.0

7
5

0
.0

8
5

CBD2 ,  kappa2

Year(t)

E
s
ti
m

a
te

d
 P

a
ra

m
e
te

rs

1968-2008

1980-2008

1950 1970 1990 2010

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

CBD2 ,  kappa3

Year(t)

E
s
ti
m

a
te

d
 P

a
ra

m
e
te

rs

1968-2008

1980-2008

1900 1950 2000

-1
.0

-0
.5

0
.0

0
.5

1
.0

CBD2 ,  gamma4

Year(t)

E
s
ti
m

a
te

d
 P

a
ra

m
e
te

rs

1968-2008

1980-2008

 
 

 



International Research Journal of Finance and Economics - Issue 82 (2012) 60 

Figure 8: Japan data: Parameter estimates for the CBD3 model 

 

 
 

Figure 9: Japan data: Parameter estimates for the CBD-E model 
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Figure 9: Japan data: Parameter estimates for the CBD-E model - continued 

 

 
 

Figure 10: UK data: Parameter estimates for the LC model 
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Figure 11: UK data: Parameter estimates for the RH model 

 

 
 

Figure 12: UK data: Parameter estimates for the CBD0 model 
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Figure 13: UK data: Parameter estimates for the CBD1 model 

 

 
 

Figure 14: UK data: Parameter estimates for the CBD2 model 
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Figure 14: UK data: Parameter estimates for the CBD2 model - continued 

 

 
 

Figure 15: UK data: Parameter estimates for the CBD3 model 
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Figure 16: UK data: Parameter estimates for the CBD-E model 
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